Growing Ultra-flat Organic Films on Graphene with a Face-on Stacking via Moderate Molecule-Substrate Interaction
نویسندگان
چکیده
The electronic properties of small molecule organic crystals depend heavily on the molecular orientation. For multi-layer organic photovoltaics, it is desirable for the molecules to have a face-on orientation in order to enhance the out-of-plane transport properties. However, it is challenging to grow well-ordered and smooth films with a face-on stacking on conventional substrates such as metals and oxides. In this work, metal-phthalocyanine molecules is used as a model system to demonstrate that two-dimensional crystals such as graphene can serve as a template for growing high quality, ultra-flat organic films with a face-on orientation. Furthermore, the molecule-substrate interaction is varied systematically from strong to weak interaction regime with the interaction strength characterized by ultrafast electron transfer measurements. We find that in order to achieve the optimum orientation and morphology, the molecule-substrate interaction needs to be strong enough to ensure a face-on stacking while it needs to be weak enough to avoid film roughening.
منابع مشابه
Epitaxial Growth of π-Stacked Perfluoropentacene on Graphene-Coated Quartz
Chemical-vapor-deposited large-area graphene is employed as the coating of transparent substrates for the growth of the prototypical organic n-type semiconductor perfluoropentacene (PFP). The graphene coating is found to cause face-on growth of PFP in a yet unknown substrate-mediated polymorph, which is solved by combining grazing-incidence X-ray diffraction with theoretical structure modeling....
متن کاملFabrication of Graphene Oxide Thin Films on Transparent Substrate via a Low-Voltage Electrodeposion Technique
Graphene oxide (GO) thin films were simply deposited on fluorine doped tin oxide (FTO) substrate via a low-voltage electrodeposition. The GO and GO thin films were characterized by Zeta Potential, X-ray diffraction, Ultraviolet-Visible spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectrosc...
متن کاملFace-on stacking and enhanced out-of-plane hole mobility in graphene-templated copper phthalocyanine.
Efficient out-of-plane charge transport is required in vertical device architectures, such as organic solar cells and organic light emitting diodes. Here, we show that graphene, transferred onto different technologically-relevant substrates, can be used to induce face-on molecular stacking and improve out-of-plane hole transport in copper phthalocyanine thin films.
متن کامل“Charge transport in organic nanoscopic systems: From organic semiconductors to van-der-Waals materials”
Novel organic materials such as organic small molecules or multilayer graphene offer wealth of fascinating new properties – two of which I will highlight in this talk: 1.) Charge transport in organic semiconductors is in part governed by their environment. To access their intrinsic properties, it is imperative to isolate them from their environment. To this end we have firstly realized two-mole...
متن کاملGraphene on the C-terminated SiC (000 1) surface: An ab initio study
The atomic and electronic structures of a graphene layer on top of the (2 × 2) reconstruction of the SiC (0001̄) surface are studied from ab initio calculations. At variance with the (0001) face, no C bufferlayer is found here. Si adatoms passivate the substrate surface so that the very first C layer presents a linear dispersion characteristic of graphene. A small graphene-substrate interaction ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016